Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1198: 339562, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35190126

RESUMO

Multiplexed assays are essential for the detection of biomarker panels. Differentiating signals from different biomarkers in a single test zone makes the detection more efficient. In this paper, a new method is designed for the synthesis of gap-enhanced nanoparticles (GeNPs) using Raman reporter molecules (RRM) and 6-amino-1-hexanethiol (6-AHT) as the spacer. The GeNPs show a nanometer-size gap, generate strong surface-enhanced Raman scattering (SERS) attributed to the gap, and exhibit discriminative spectral peaks. The strong Au-S bonds on both core and shell sides and the covalent bond between RRM and 6-AHT led to a stable structure, which ensured the stable SERS signal generation from the GeNPs. Using the GeNPs, a spectrally multiplexed assay for the detection of a biomarker panel is developed. The biomarker panel is composed of cardiac troponin I (cTnI), copeptin, and heart-type fatty acid-binding protein (h-FABP), which improves myocardial infarction (MI) diagnostic performance. A paper-based platform that is more amenable to point-of-care diagnostic analysis is used. The developed single biomarker assay achieves limits of detection of 0.01 ng mL-1, 0.86 ng mL-1, 0.004 ng mL-1 for cTnI, h-FABP, and copeptin in buffer solutions. The dynamic range of the assay in human serum samples also covers the clinically relevant range of the biomarkers. The cross interference in the multiplexed assay is low. These results show the strong potential of the developed GeNPs in multiplexed detection of biomarkers and the developed simple-to-use multiplexed assay in the diagnosis of MI at the point of care.


Assuntos
Nanopartículas Metálicas , Infarto do Miocárdio , Biomarcadores/análise , Humanos , Nanopartículas Metálicas/química , Infarto do Miocárdio/diagnóstico , Análise Espectral Raman/métodos , Troponina I
2.
Anal Chem ; 93(10): 4497-4505, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33660983

RESUMO

A microfluidic paper-based analytical device (µPAD) is a cost-effective platform to implement assays, especially for point-of-care testing. Developing µPADs with fluidic control is important to implement multistep assays and provide high sensitivities. However, current localized delays in µPADs made of sucrose have a limited ability to decrease the flow rate. In addition, existing µPADs for automatic multistep assays are limited by their need for auxiliary instruments, their false activation, or their unavoidable tradeoff between available fluid volumes and temporal differences between steps. Here, a novel µPAD composed of a localized dissolvable delay and a horizontal motion mechanical valve for use as an automatic multistep assay is reported. A mixture of fructose and sucrose was used in the localized dissolvable delay and it provided an effective decrease in the flow rate to ensure adequate sensitivity in an assay. The dissolvable delay effectively doubled the flow time. A mechanical valve using a horizontal movement was developed to automatically implement a multistep process. Two-step and four-step processes were enabled with the µPAD. Cardiac troponin I (cTnI), a gold-standard biomarker for myocardial infarction, was used as a model analyte to show the performance of the developed µPAD in an assay. The designed µPAD, with the simple-to-make localized dissolvable delay and the robust mechanical valve, provides the potential to automatically implement high-performance multistep assays toward a versatile platform for point-of-care diagnostics.

3.
J Biomed Opt ; 25(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32901465

RESUMO

SIGNIFICANCE: Cardiac troponin I (cTnI) is a primary biomarker for diagnosis of myocardial infarction (MI). In contrast to central laboratory tests for cTnI, point-of-care (POC) testing has the advantage of providing results when the patient is first encountered, which helps high-risk patients to be treated more rapidly and low-risk patients to be released in a timely fashion. A paper fluidic platform is good for POC testing because the paper is abundant, low cost, and disposable. However, current cTnI assays on paper platforms use antibodies as the recognition element, which has limitations due to the high cost of production and antibody stability issues at the POC. AIM: To develop an aptamer-based assay on a paper strip using surface-enhanced resonance Raman spectroscopy (SERRS) for detection of cTnI in the clinically relevant range at the POC. APPROACH: Gold nanoparticles (AuNPs) were functionalized with a Raman reporter molecule, malachite green isothiocyanate. The functionalized AuNPs were encapsulated in a silica shell and provided a SERRS signal using a handheld Raman system with a 638-nm excitation wavelength. A primary aptamer and a secondary aptamer of cTnI were used in a sandwich assay format to bind the cTnI on a test line of a paper fluidic platform. By measuring the SERRS signal from the test line, the concentration of cTnI was quantitatively determined. RESULTS: The aptamer-based SERRS assay on a paper strip had a detection range of 0.016 to 0.1 ng / ml for cTnI, had good selectivity for cTnI compared to three other markers, had good stability over 10 days, and had good performance in the more complex serum sample matrix. CONCLUSIONS: The aptamer-based SERRS assay on a paper strip has the potential to provide a sensitive, selective, stable, repeatable, and cost-effective platform for the detection of cTnI toward eventual use in diagnosis of MI at the POC.


Assuntos
Nanopartículas Metálicas , Troponina I , Bioensaio , Ouro , Humanos , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...